Distinct functional properties of isoamylase-type starch debranching enzymes in monocot and dicot leaves.

نویسندگان

  • Maud Facon
  • Qiaohui Lin
  • Abdelhamid M Azzaz
  • Tracie A Hennen-Bierwagen
  • Alan M Myers
  • Jean-Luc Putaux
  • Xavier Roussel
  • Christophe D'Hulst
  • Fabrice Wattebled
چکیده

Isoamylase-type starch debranching enzymes (ISA) play important roles in starch biosynthesis in chloroplast-containing organisms, as shown by the strict conservation of both catalytically active ISA1 and the noncatalytic homolog ISA2. Functional distinctions exist between species, although they are not understood yet. Numerous plant tissues require both ISA1 and ISA2 for normal starch biosynthesis, whereas monocot endosperm and leaf exhibit nearly normal starch metabolism without ISA2. This study took in vivo and in vitro approaches to determine whether organism-specific physiology or evolutionary divergence between monocots and dicots is responsible for distinctions in ISA function. Maize (Zea mays) ISA1 was expressed in Arabidopsis (Arabidopsis thaliana) lacking endogenous ISA1 or lacking both native ISA1 and ISA2. The maize protein functioned in Arabidopsis leaves to support nearly normal starch metabolism in the absence of any native ISA1 or ISA2. Analysis of recombinant enzymes showed that Arabidopsis ISA1 requires ISA2 as a partner for enzymatic function, whereas maize ISA1 was active by itself. The electrophoretic mobility of recombinant and native maize ISA differed, suggestive of posttranslational modifications in vivo. Sedimentation equilibrium measurements showed recombinant maize ISA1 to be a dimer, in contrast to previous gel permeation data that estimated the molecular mass as a tetramer. These data demonstrate that evolutionary divergence between monocots and dicots is responsible for the distinctions in ISA1 function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen.

In this study, our goal was to evaluate the role of starch debranching enzymes in the determination of the structure of amylopectin. We screened mutant populations of Arabidopsis for plants with alterations in the structure of leaf starch by using iodine staining. The leaves of two mutant lines stained reddish brown, whereas wild-type leaves stained brownish black, indicating that a more highly...

متن کامل

Replacement of the Endogenous Starch Debranching Enzymes ISA1 and ISA2 of Arabidopsis with the Rice Orthologs Reveals a Degree of Functional Conservation during Starch Synthesis

This study tested the interchangeability of enzymes in starch metabolism between dicotyledonous and monocotyledonous plant species. Amylopectin--a branched glucose polymer--is the major component of starch and is responsible for its semi-crystalline property. Plants synthesize starch with distinct amylopectin structures, varying between species and tissues. The structure determines starch prope...

متن کامل

New Perspectives on the Role of α- and β-Amylases in Transient Starch Synthesis

Transient starch in leaves is synthesized by various biosynthetic enzymes in the chloroplasts during the light period. This paper presents the first mathematical model for the (bio)synthesis of the chain-length distribution (CLD) of transient starch to aid the understanding of this synthesis. The model expresses the rate of change of the CLD in terms of the actions of the enzymes involved. Usin...

متن کامل

Purification and molecular genetic characterization of ZPU1, a pullulanase-type starch-debranching enzyme from maize.

This study identified and purified specific isoamylase- and pullulanase-type starch-debranching enzymes (DBEs) present in developing maize (Zea mays L.) endosperm. The cDNA clone Zpu1 was isolated based on its homology with a rice (Oryza sativa L.) cDNA coding for a pullulanase-type DBE. Comparison of the protein product, ZPU1, with 18 other DBEs identified motifs common to both isoamylase- and...

متن کامل

Differential chain-length specificities of two isoamylase-type starch-debranching enzymes from developing seeds of kidney bean.

Plant isoamylase-type starch-debranching enzymes (ISAs) hydrolyze alpha-1,6-linkages in alpha-1,4/alpha-1,6-linked polyglucans. Two ISAs, designated PvISA1/2 and PvISA3, were purified from developing seeds of kidney bean by ammonium sulfate fractionation and several column chromatographic procedures. The enzymes displayed different substrate specificities for polyglucans: PvISA1/2 showed broad ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 163 3  شماره 

صفحات  -

تاریخ انتشار 2013